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Long-range magnetic order and the Darwin Lagrangian
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We simulate a finite system &f confined electrons with inclusion of the Darwin magnetic interaction in two
and three dimensions. The lowest-energy states are located using the steepest descent quenching adapted for
velocity dependent potentials. Below a critical density the ground state is a static Wigner lattice. For super-
critical density the ground state has a nonzero kinetic energy. The critical density decreasés faith
exponential confinement but not for harmonic confinement. The lowest-energy state also depends on the
confinement and dimension: an antiferromagnetic cluster forms for harmonic confinement in two dimensions.

PACS numbgs): 05.70.Fh, 41.26-q, 64.70-p, 36.40-cC

[. INTRODUCTION (nonrelativistig regime. One reason for that is to be found in
the long range of the Darwin force and the fact that it is
The use of fast modern computers has made it increassadly screened, unlike the Debye screening of the Coulomb
ingly easy to investigate many-dimensional finite systemdorce[18]. These two factors compensate for the weakness of
and to study dynamical quantities such as time to equipartithe Darwin interaction at low velocities and make it a player
tion, symmetry break in finite systems, and quantities of therin certain circumstancdd,8]. Last, the Darwin Lagrangian
modynamic interesf1—6]. The numerical studies have also has also been used as an unfolding of the scale invariant
revealed unexpected features of finite systems like clustetegenerate Coulombian interaction to estimate long-time-
formation[3—-5] and lack of equipartitiofi1,2]. In this paper scale dynamical effects in atomic phys[d$)].
we study numerically the energetic quenching of a classical It should be noted that the Darwin Lagrangian is neither
electron gas with inclusion of the magnetic interac{i@dr9]. Galilean or Lorentz invariant and therefore it can only be
The main motivation to study this system is the physics itused as an approximation to a comprehensive relativistic
describes and unfortunately the dynamics of this finite sysphysical theory{20,21]. The Darwin interaction is actually
tem is not easy to study because the equations of motion athe first correction to the Coulomb interaction in both Max-
algebraic-differential in charactéd0]. Because of this we well's electrodynamics and in the relativistic action-at-a-
explored numerically only the quenching motion, which in- distance electrodynami¢g2]. (The series expansion for the
volves integration of simple ordinary differential equations. action-at-a-distance electrodynamics is made from the usual
Like the Coulomb interaction, the magnetic interaction is aPage series of Maxwell's theofy23] by dropping the odd
long-range interaction. The long-range nature of the Coupowers) Approximation is always necessary, as the exact
lomb interaction has been widely explored in molecular dy-treatment of relativistic many-body dynamical systems in-
namics and there is a large literature of numerical simulavolves nonlocal delayed interactions that are hard to imple-
tions and various special techniques that were invented tment numerically, with some few exceptions found by
deal with the long-range nature of the interacti{di]. On  Kerner and Currie that can be both Galilean and Lorentz
the other hand, the magnetic interaction has been much legsvariant as well as local in phase space all at di2€4. The
studied. way we justify the Darwin approximation in the present
The magnetic interaction appears naturally in classicalvork is that we operate in a reference fraftiege center of
Maxwell electrodynamics: The lowest-order retardation andnas$ where all the electrons have small velocities simulta-
magnetic effect§or order (//c)?] can be described in terms neously. It is in this frame that the Darwin interaction ap-
of electron variables only as a velocity-dependent interacproximately describes the correct Lorentz-invariant physical
tion. This approximation was originally proposed by Darwin dynamics. A discussion of the broader validity of the Darwin
[12] to obtain a Lagrangian that bears his name. The Darwimpproximation within Maxwell's electrodynamics can be
Lagrangian is much used in atomic physj¢8,14 where it  found in[9].
is known as the Darwin-Breit interaction in its quantized Experimentally, aggregates of electrons with the same
form. The Darwin Lagrangian includes the lowest-order cor-sign of charge can be confined for long times using suitably
rection to the electric field of a moving charge and thechosen static electric and magnetic fields and form so-called
lowest-order magnetic fieldthe Biot-Savart term Apart  non-neutral plasma&or a recent review sef24]). Differ-
from its traditional domain of atomic physics the Darwin ently from neutral plasma@.e., composed of electrons with
Lagrangian has been used to model slightly relativistic plasboth sign of charge in approximately equal numhette
mas[15-17 and even models of superconductivity and stel-non-neutral plasmas can attain thermal equilibrium and cool
lar magnetic field§7]. These ideas extend the range of theto low enough temperatures to form liquid and crystal-like
Darwin Lagrangian from conventional relativistic correction: states. These plasmas under various confinement geometries
the Darwin corrections are also important in the low-energyhave been extensively studied, particularly in the last decade.

1063-651X/2000/6(@)/11997)/$15.00 PRE 61 1199 ©2000 The American Physical Society



1200 VISHAL MEHRA AND JAYME DE LUCA PRE 61

Generally the interelectron interaction is taken to be Cou-
lombic or Yukawa. A(rv)=e,
The study of the possible low-energy states of a system 17

may shed some light on the possibility of a phase transition

We chose to study the magnetic long-range effects in a corﬁ‘s the Lagrangian is time independent, there is an associated

fined electron gas and in the neighborhood of its lowestE"erY constant which evaluates[

energy state. We confine a system of charged electrons in 1 e e2

two and three dimensions by use of a background field, taken E=, ~mv?+ ——v;-Ai(r,v)+ >, —+ >, Vc(r)).
either to be of a harmonic or exponential form. The electrons T2 2c i<i T

interact by Coulomb plus Darwin forces. For the purely Cou- 4)
lombian repulsion, it is known that the lowest-energy state of, ..: : : o ;

this system is a Wigner latticériangularlike in two dimen- Notlce that this energy isot of the minimal coupling type
siong, which we also find with our quenching techniques 1
[25,26. We show that the long-range effects dependhbn E=> E(pi_Ai)2+V- 5)
and on a single parametgr which is usually of the order of

10"*-10"? for attainable physical densities. We find that which is only the case when the magnetic field is external to
low-N systems need an artificially larger value @ffor the  the system, and consequently the vector potential is velocity
long-range effects to be important. The assumption is thghdependent. In the present situation, because of the internal
the critical value goes down witR, and because of the prac- fie|ds, the state of minimal energy is not always the zero
tical impossibility of simulating systems with millions of yelocity configuration anymore, as the conditions for the
e|ecl‘r0ns, we investigate finite SyStemS for an artiﬁcia”yBohr_Van Laufen theorem are not Sat|sf|@j18,21 [Th|s
higher value ofg and extrapolate the scaling properties totheorem states that a velocity-independent vector potential
the largeN case. This assumption holds for the exponentiakjoes not affect the partition functidfthe energy is of the
confinement but not for the harmonic confinement, where theninimal coupling form(5).]
critical 8 does not go down wittN. The form of the equations can be simplified by using
This paper is divided as follows. Section Il introduces thesca|ed units: a |ength scale, gi\/en by the average interelec-
model and defines the quenching procedure. The numericrﬁjOn separatiorR, scales positions a6—RX (in these units
results for the two-dimensioné2D) systems are described in the gas has a (yjensity equal to pnEime is scaled asit

Sec. lll; two subsections correspond to types of confining 2_ .2 :
potential. Section IV deals with the three-dimensio(&iD) HdeTWhereg’é_i;mRS' Inthese units the energy scales
wi

systems, again divided into subsections. The papers en@S E—m(woR)
with a discussion in Sec. V.

Vj+eij(Vj'eij)
2Cfij

()

E-S }\7_2+2 i+,822 Vi Vit (vi-e;) (V&)
IIl. DARWIN LAGRANGIAN AND THE NATURAL T2 S Fij i< 2rij

QUENCHING
(6)

We considel electrons in two or three dimensions inter- * 2,: Vel(ri).
acting via the Coulomb repulsion plus the velocity-
dependent Darwin magnetic interactif®12] and confined The parameteB? in the above equation is defined as

by a one-electron potentiaV(r) of the positive back-

ground. The Lagrangian for this system can be written as 2= = @)
M o e L e ViV (Vi &)(V; &) . . _
L== > vi—e?D>, —+e?> L S wherer,=e?’/mc is the classical electron radius and the
2= <3 Tij 1<) 2¢7Tj) interelectronic distanc® in 2D is given byR=1/\/n and
R=n"%2in 3D. For some real physical situations: The con-
—Z VC(Fi), (1) duction band in metals forms a 3D degenerate plasma with
|

typical densities o~ 10°® cm™3, which gives for3? the

R R N _ _ value of 82~10 ©. The highest density physical plasma is
wherer; andv; are the position and the velocity of thth  found in the interior of white dwarf stars, corresponding to
electron andrj;=r;—r;, r;;=|r;|, e;=r;;/r;; is the unit an electron density ofn~10*2 cm * which gives g°
vector pointing from theith to the jth electron,e is the  ~10 3 [28].
electronic charge, andis the velocity of light. The first term Once the systems studied here are rotationally invariant,
is the kinetic energ¥ g of the system and the second term is Noether’s theorem determines a constant of mofi#j for
the Coulomb energy. The next term is the Darwig which ~ them

can be expressed in terms of the vector potem?tials N

N - - - ~ - ~
I riXv+(rixXe;) (v )
c=3, fixv,+ s, T e &)
=1 <] 2rj;

L 8
Vp=—= > Vi‘A;, ()
with e;;=r; /r;;, as before. For 2D this constant is a vector

with perpendicular to the plane and for 3D thé3Dsymmetry
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determines a constant vector by the above formula. This comegative eigenvector directions. We have diagonalideith

stant can be interpreted simply as the sum of the mechanic#he neighborhood of the Wigner lattice and it is satisfactory

angular momenta plus the field angular momentum. that the critical 3 calculated by the matrix method agrees
To look for the minimum energy states of the velocity- with the values obtained by quenching.

dependeniN-body system, we adapt a numerical procedure

analogous to the steepest descent quenching using what we |||, NUMERICAL RESULTS FOR CIRCULAR DISK

name the natural quenching vector field. We check that for GEOMETRY
potential systems this procedure produces the static crystal- . .
line arrangement of electrons known as the Wigner lattice A. Harmonic confinement

[25,26. We now define the natural quenching vector field, We consider first a system &f electrons in 2D, confined
which is constructed from the differential of the expressionby the field of a uniformly charged circular disk of positive
for the energy constant given by E(f). We start from a charges, of radiuRy scaled units, and with the electronic
random initial condition and integrate it as a function of adensity of one electron per squared scaled uNit:(qTRﬁ)_
“quenching parameter” by the following gradient equations: For this system the potential of the uniformly charged disk of
positive background can be calculated analytich®#¥] and

d_Fi: _JE d_\7i: _JE © for r<Ry it is approximated by
ds or, ds o, 732
Ve(r)=—2(7N)+ z—pr2. 12
It is easy to see that along this gradient motion the energy clr) (N) 2NY2 (12
always decreases, as the parameter derivative of the ener%/ L )
evaluates to e have explicitly included the negative constant to prop-
erly account for the electrostatic interaction with the positive
dE JE|2 JE|2 background. One still needs to add the self-energy of the
ds —Z 2 —Z ol (100 positive background/mN¥%8 to expression(6) in order to
i i

get the total electrostatic energy. We seek to determine the
. . . ... lowest-energy states of this system by employing the natural
AIgng W'.th. the numerical quenching fro.m_ rqndom initial quenching technique described above, and we integrate Egs.
conditions it is necessary to use the relativistic form of the ; ; 4
o . 9) numerically with an 6/7 Runge-Kutta embedded integra-
kinetic energy. Otherwise, we observe that some electron . . . - i,
or pair. By quenching from different initial conditions we

acquire an enormous kinetic energy during quenching, creatan hope to obtain insight into the character of the ground

ing an enormous nonphysical internal field that still de'state. The natural quenching is performed for the disk system

creases the total energy. Of course, for such large velocitie]%r various values of the parametg?. The electrons are
the Darwin approximation breaks down and the whole La- . pa L ; .
arted from a triangular lattice, distorted slightly in a ran-

grangian describes nonphysical effects, as discussed in Rej, : . ; ;
. ) om manner, with velocities uniformlgand randomly dis-
[30]. In all our numerical experiments we check that the_ . X ) .
. o . tributed up to a certain maximum value. A square-lattice-
electron energies were never relativistic in the final quenche e initial confiauration is also used and the same final
state, which guarantees that the Darwin approximation io/P g

valid. Last, to gain some understanding of how the aboveresult is found. The system is quenched until a steady state

) ) > .. appears to have been reached. To check if we actually attain
guenching procedure can find states with nonzero velocity - o
X i . a global minimum state and not merely a local minimum, we
let us examine Eq9) for the velocities, which read as ; : : . . .
slightly heat the obtained configuration and quench it again.

d By these means we are confident that our ground states are at
i _ —vi— 32> (11)  least qualitatively correct.
ds ' j#i 21y These simulations are done for 225 to 1600 electrons in
the disk. In all cases it is observed that below a certain value
Notice that on the right-hand side we have a linear functiornof the paramete3? the ground state is the static Wigner
of the velocities, defining a linear matrM(Fi ,B%). For B2 lattice, independent of thg?. But above the criticaﬂg, a
=0, this matrix is minus the identity and the velocities areunique type of ground state is obtained. This state has non-
all quenched down to zero. Above a critical valugd3f this  zero kinetic energy with a striking nonuniform distribution
matrix can have negative and zero eigenvalues, and it is naif velocities. The electrons with large velocities are confined
possible to quench the velocities to zero anymore, which iso an antiferromagnetic cluster in the center of the disk. The
the cause of the nonzero velocity states we find. The criticatonfiguration in the position space remains visibly triangu-
point 82 can also be located by an alternative analyticallarlike. The electrons in the central cluster have velocities
method: Consider Eq.11) for the velocity quenching. For aligned in a manner to minimize the Darwin enefgyg. 1.
B?=0, the eigenvalues d¥l are all degenerate and equal to This parallel and antiparallel orientation of the velocities
one. Taking the electron coordinates to be those of the statigucceeds in lowering the energy of the nonstatic configura-
Wigner lattice(which can be obtained fg82=0), one can tion below the static Wigner lattice.
diagonalizeM numerically and find all its eigenvalues. The  The critical parameter valug? decreases with the in-
critical 82 is that for which the minimum eigenvalue ®  creasingN, the number of electrons in the disk, but it is
crosses zero, i.e., the minimum eigenvalud/ois just nega- rather a weak dependence. For the 225 electrons @igk,
tive. It can be seen then that in this case the quenching wilk0.72 while it is approximately 0.71 for the 1600 electrons
decrease the energyhile increasing the velocities along the disk. The relative size of the cluster slowly decreases with

>

Vj+eij(V]"eij)
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FIG. 1. The ground state of a harmonically confined disk with 35006
N=900 at3?=0.75. The electrons are located at positions marked .
with +. Arrows are drawn from these positions; the length of the ;. |
arrows is proportional to the magnitude of the electron velocities§
obtained after quenching. The direction of an arrow gives the angle
of the corresponding velocity vector. Coordinates are in units of
B~ %r, wherer is the classical electron radius.

-38.028

-38.029 - -

increasingN: we quantify it as following. An electron be- 064 066 068 070 072 074 076

longs to the cluster i8?vZ>0.01. The quantity3®v? is gen- ¥

erally about 0.06 for the fastest electron. t=0.75, this

criterion yields the fraction of the cluster electrons to be 0.3

for the 225 electron system and monotonously decrgasmg tgnergy unit isg%e?/r .. (b) Ground-state energy of a harmonically

0.26 forN=900 and to 0.23 foN=1600. However, it ap-  onfined electron gas in 3D wit=216 vs82. The critical 8 is

pears that the cluster remains equally hot, independeNt of gjightly less than 0.67. Energy is scaled B3e?/r .

i.e., the average kinetic energy per cluster electron does not

depend orN at constani3?. Further increasing the value of )

82 beyondpg? causes a rapid increase both in the size and the | 'he character of the ground states is also affected. The

temperature of the cluster. The ground-state energy contir?—dge(_"e" the_surfac)eof the static Igttlc_e is no longer trian-

ues to decrease @? is increased beyonﬂg (Fig. 2. gularlike .but is c_om.pos.ed pf twp ringlike layers. Aboﬁé '
The quenching runs do not always vield the ground statethe veIogty distribution is highly mhomogeneoqs: the kinetic

Often, in particular for larger-sized disks, an imperfectly €n€rgy is concentrated in the two edge layéfig. 4). In-

aligned higher energy state is obtained. The local order is ofreasing? beyond 82 does not result in more electrons

the same type as the true ground state but on a larger scaequiring kinetic energy but merely increases kinetic energy

two or more regions of the local order have a mismatchof the edge electrons.

analogous to grain boundaries in a polycrystalline material

FIG. 2. (8) Ground-state energy of a harmonically confined disk
ith N=225 vs82. The critical 82 is slightly less than 0.72. The

(Fig. 3.
25 T T T T T T T T T
20 + 7
B. Exponential confinement 5 RS RRAE ENE N R
B ,',’.*:jf_:j:::;’,*};':':j‘:::_:::‘ T
The effect of choice of the confining potential may be w0l ORI A ARSI SRR |
studied by considering a different potential. To this end, we s . .‘.;.;.;.‘.*I'},’é}f;,%*%,%;} ST
. . . . L N A A NN e SRS S PSS S AL R
replace the harmonic potential by an exponential potential, S 1:;,7;.«;,@‘:’;%’5;:\;\@;@ ML KR
> 0 rvieeelramEIRTINNNG NIl
LR ‘o‘c’a«;“éz)"** \g\\:\s Q,:“,:.*o+,
Y _ + t ++. s . 4”:“’{:"( - \{&\‘ '\s,\\1 ::ﬂ::; o: : + *
Ve=Voexd(r—Rg)/rw]. S g{{»’o.ﬁ‘v‘{:‘f".‘"?N‘I\:Q:;\E\{Q}@ AR
PN .’.‘»::‘ 'I’«v'\«':‘I\M}‘*‘:«‘:::\"*."',
-10 | R A R R AL S PRSI 7
Here, as befordRy=/(N/7) andr,,=0.5 in scaled units. a5 | Cermtiniziiiiirnivinioats -
The quenches are performed in a manner identical to tha 5 L Tele el 4
described above, starting from a randomly distorted triangu- 5 , , . , , , . , ,
lar lattice. The criticalﬂg is obtained, separating the static 25 2 15 10 5 0 5 10 15 20 25
and nonstatic ground states. The valueggbfare rather low X

agd theydecreaseappreciably with increasingl. We find FIG. 3. A higher-energy minimum of a harmonically confined
B:~0.52 forN=225 to about 0.42 foN=1600. Thesgand  gisk with N=900 atg?=0.75. The arrows are made in the manner
the intermediatédN =484 andN=900) values may be fitted described in the previous figure. Coordinates are in unitg .

to a power Iaw,8§~N" with a~—0.11. wherer  is the classical electron radius.
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FIG. 5. The ground state for harmonically confined system in
FIG. 4. The ground state of an exponentially confined electrorthree dimensions wittN=216 ats*=0.74. The velocities project
gas in 2D at3?=0.45. The arrows are drawn as in Fig. 1. Coordi- radially outwards. Arrows are made in a manner similar to the
nates are in units g8~ %r, wherer, is the classical electron radius. two-dimensional case but without pluses. Coordinates are in units
of B~ 2r, wherer, is the classical electron radius.
IV. NUMERICAL RESULTS FOR SPHERICAL

GEOMETRY tant electrons. Whereas, in the 2D disk geometry, the Darwin

interactions between nearest-neighbor electrons lower the
A. Harmonic confinement Darwin energy.

In this section we consideX electrons confined by the

field of a homogeneous positively charged sphere of radius ) ) i , )
Ry. The potentialfor r<Ry) can be calculated exactly, In this section we describe the results of the simulation of

3D electron gas confined by an exponential potential

B. Exponential confinement

O oo m2 2T o
Ve=—-27Rg+ 3 re, Ve=Voexg (r—Ry)/ryl.

Here Ry is defined by the reIatiorN=(47r/3)R§, andry
which follows immediately from the Gauss law of electro- =1 5. The static and nonstatic ground states are again ob-
statics. To obtain the total electrostatic energy we must agaifhined, below and abovﬁ(z:, respective|y_ Though, in con-
add the self-energy contribution of the backgroundirast to the harmonic confinement, tf#82 decreases with
(m/5)NR to expressior(6). As before, the electron density jncreasingN with the power lawgZ~N~%23 The values of
is taken to be one electron per scaled unit. Quenches arg? range from 0.74 foN =216 to 0.50 forN=1000.
performed forN=216-1000 electron systems. Simulations "The |attice has a ringlike structure again but with some
are started from a randomly distorted cubic lattice, while thegifferences. First, the number of rings is smallisr= 1000
velocities are initialized in the manner previously describedsystem has only four rings compared with seven with har-
for the disk geometry. As in the disk geometry, a criti@&l  monic potential. Second, the central cluster is absent. The
separates static ground states from the nonstatic grourdlstribution of kinetic energy is also different from the har-
states. The critical 82 is slightly smaller in three monic case. The kinetic energy per electron increases as one
dimensions—it varies from=0.67 forN=216 to about 0.66 goes outwards and foX=1000 the inner two rings have
for N=1000. almost no kinetic energy.

But the character of the ground states is very different
from that obtained for the disk geometry. The electrons are
arranged in a multiple ringlike structure around the center of |t would be natural to integrate the supercritical
the ball. These rings possess sharp boundaries and their nugymmetry-breaking states of low energy and nonzero angular
ber grows withN. For example, the 216 electrons system hasmomentum to see the time dependence of the angular mo-
four such rings(including the cluster of central electrons mentum[6], but this is not an easy numerical job. The exis-
while seven rings are visible fad=1000 system. tence of zero and negative eigenvalueshfin Eq. (11)

This ringlike structure persists beyorﬁﬁ. Though, the signals the onset of complex dynamical behavior for this
velocity distribution is not homogeneous, a distinct cluster ofSystem: The Lagrangian equations of motion that follow
hot electrons is not formed. The velocities project radiallyfrom Eqg. (1) are
outwards(Fig. 5). The electrons in the small central cluster
have smaller than average kinetic energy. The kinetic energy 5i +322
is fairly shared between the other rings but the distribution j#i 2rj;
between electrons in a particular ring is nonuniform. -

The different ordering in two and three dimensions has _ dVe < & + 823 1 (V- &)V
striking effects: in 3D the Darwin interactions between ar, = r_ﬁ_ B & 2_r|2]_ Y
neighboring electrons are highly repulsive and the lowering
of the energy is provided by the Darwin interactions of dis- +[|vjl2=3(vj-&;)2—2v;-v;le;}. (13

V. DISCUSSIONS AND CONCLUSIONS

aj+eij(aj 'eij)
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Notice that this is an algebraic-differential equatidd], and  E/N tends to a constant value. This is in agreement with
the linear matrix sitting on the left side is the same exaciGauss’s law, by which charge neutrality causes the total elec-
matrix M that appeared in Eq11). The numerical procedure trostatic energy to be an extensive quantity. On the other
to integrate this equation is delicate: If the matrix is nonde-hand, our data for 2D indicate that the total electrostatic en-
generate, which is the case for low valuegothe integrator ergy is nonextensive. We were intrigued by these results on
RADAU [32] can be used in a fast and efficient way. If the quenched 2D lattices, and as a check we evaluated numeri-
matrix has only one zero eigenvalue, the integrator DASSlcally the total electrostatic energglus background energy
[10] can be used, as long as the matrix does not lose ranfor an exact triangular Wigner lattice of up té= 10000
along the trajectory, which is the case for rare initial condi-electrons. The results confirm that the total electrostatic en-
tions only. The general high-index case where the matrix'rgy is really non-extensive, and there seems to be no ther-
rank is lesser than®—1, or even worse if it loses rank modynamic limit in 2D.

along the trajectory, then one is faced with a rich system and At constants? the Darwin lowering of energy is smaller
certainly a very complex dynamics. As a matter of fact, infor larger N systems in 2D. This can also be inferred from
1976 one of the earliest studies of this many-body systenthe observation made in Sec. Ill A that the fraction of hot
declared it intractabl¢15] and a coarse-grained field ap- electrons goes down with increasihy Thus our results in-
proximation was developed to study it, which later became alicate that as linN—cc at constant electron density the Dar-
plasma simulation technigy&7]. We could integrate initial win lowering vanishes. This conclusion holds for harmoni-
conditions with a very lows, and there we found that the cally confined systems for whigh? is almost independent of
angular momentum is an approximate constant, as it should and hence different sized systems can be compared at con-
be for the=0 case, according to E¢8). For intermediate  stant3.

values of3 we are able to perform the numerical integration ~ The magnetic lowering does not decrease with laga

of the dynamics using RADAU, and we find that the total 3D, which is suggestive that the effect could survive in a
angular momentum does not change sign for very-long-tim@roper thermodynamic limit. In a certain sense, the Darwin
scales. In the supercritical situation, where it would be ofinteraction merely renormalizes the electronic charge. But
interest to study the dynamics, we find that the time steps othis would interfere with the cancellation of the background
RADAU quickly go to zero due to the criticality of the ma- charge and hence jeopardize the thermodynamic [i88t.

trix. An integration method has still to be developed to simu-We feel that more numerical and analytical work is needed to
late this interesting dynamics in the high algebraic indexresolve the question of the thermodynamic limit for the Dar-
situation. win Lagrangian in 3D.

Our numerical results definitely show that fiamite N the
magnetic interaction lowers the energy below the Wigner
lattice, which is the main result of this paper. The thermody-
namic limit is a more subtle question, which we cannot com- We acknowledge discussions with A. Castelo, F. C. Al-
pletely decide with numerics. As regards the extensivity ofcaraz, and J. P. Rino. J. De Luca acknowledges Fapesp, Proc.
the purely Coulomb latticequndercritical densities our re-  No. 96/06479-9 and CNPQ Proc. No. 301243/9¥M8) and
sults are as follows: In three dimensions, our data show tha¥. Mehra acknowledges Fapesp, Proc. No. 98/0947-0.
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