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Long-range magnetic order and the Darwin Lagrangian

Vishal Mehra and Jayme De Luca
Departamento de Fı´sica, Universidade Federal de Sa˜o Carlos, Rod. Washington Luiz km 235, 13565-905, Caixa Postal 676,

São Carlos, SP, Brazil
~Received 30 August 1999!

We simulate a finite system ofN confined electrons with inclusion of the Darwin magnetic interaction in two
and three dimensions. The lowest-energy states are located using the steepest descent quenching adapted for
velocity dependent potentials. Below a critical density the ground state is a static Wigner lattice. For super-
critical density the ground state has a nonzero kinetic energy. The critical density decreases withN for
exponential confinement but not for harmonic confinement. The lowest-energy state also depends on the
confinement and dimension: an antiferromagnetic cluster forms for harmonic confinement in two dimensions.

PACS number~s!: 05.70.Fh, 41.20.2q, 64.70.2p, 36.40.2c
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I. INTRODUCTION

The use of fast modern computers has made it incre
ingly easy to investigate many-dimensional finite syste
and to study dynamical quantities such as time to equipa
tion, symmetry break in finite systems, and quantities of th
modynamic interest@1–6#. The numerical studies have als
revealed unexpected features of finite systems like clu
formation@3–5# and lack of equipartition@1,2#. In this paper
we study numerically the energetic quenching of a class
electron gas with inclusion of the magnetic interaction@7–9#.
The main motivation to study this system is the physics
describes and unfortunately the dynamics of this finite s
tem is not easy to study because the equations of motion
algebraic-differential in character@10#. Because of this we
explored numerically only the quenching motion, which i
volves integration of simple ordinary differential equation
Like the Coulomb interaction, the magnetic interaction is
long-range interaction. The long-range nature of the C
lomb interaction has been widely explored in molecular d
namics and there is a large literature of numerical simu
tions and various special techniques that were invente
deal with the long-range nature of the interaction@11#. On
the other hand, the magnetic interaction has been much
studied.

The magnetic interaction appears naturally in class
Maxwell electrodynamics: The lowest-order retardation a
magnetic effects@or order (v/c)2# can be described in term
of electron variables only as a velocity-dependent inter
tion. This approximation was originally proposed by Darw
@12# to obtain a Lagrangian that bears his name. The Dar
Lagrangian is much used in atomic physics@13,14# where it
is known as the Darwin-Breit interaction in its quantiz
form. The Darwin Lagrangian includes the lowest-order c
rection to the electric field of a moving charge and t
lowest-order magnetic field~the Biot-Savart term!. Apart
from its traditional domain of atomic physics the Darw
Lagrangian has been used to model slightly relativistic p
mas@15–17# and even models of superconductivity and st
lar magnetic fields@7#. These ideas extend the range of t
Darwin Lagrangian from conventional relativistic correctio
the Darwin corrections are also important in the low-ene
PRE 611063-651X/2000/61~2!/1199~7!/$15.00
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~nonrelativistic! regime. One reason for that is to be found
the long range of the Darwin force and the fact that it
badly screened, unlike the Debye screening of the Coulo
force@18#. These two factors compensate for the weaknes
the Darwin interaction at low velocities and make it a play
in certain circumstances@7,8#. Last, the Darwin Lagrangian
has also been used as an unfolding of the scale invar
degenerate Coulombian interaction to estimate long-tim
scale dynamical effects in atomic physics@19#.

It should be noted that the Darwin Lagrangian is neith
Galilean or Lorentz invariant and therefore it can only
used as an approximation to a comprehensive relativi
physical theory@20,21#. The Darwin interaction is actually
the first correction to the Coulomb interaction in both Ma
well’s electrodynamics and in the relativistic action-at-
distance electrodynamics@22#. ~The series expansion for th
action-at-a-distance electrodynamics is made from the u
Page series of Maxwell’s theory@23# by dropping the odd
powers.! Approximation is always necessary, as the ex
treatment of relativistic many-body dynamical systems
volves nonlocal delayed interactions that are hard to imp
ment numerically, with some few exceptions found
Kerner and Currie that can be both Galilean and Lore
invariant as well as local in phase space all at once@20#. The
way we justify the Darwin approximation in the prese
work is that we operate in a reference frame~the center of
mass! where all the electrons have small velocities simul
neously. It is in this frame that the Darwin interaction a
proximately describes the correct Lorentz-invariant physi
dynamics. A discussion of the broader validity of the Darw
approximation within Maxwell’s electrodynamics can b
found in @9#.

Experimentally, aggregates of electrons with the sa
sign of charge can be confined for long times using suita
chosen static electric and magnetic fields and form so-ca
non-neutral plasmas~for a recent review see@24#!. Differ-
ently from neutral plasmas~i.e., composed of electrons wit
both sign of charge in approximately equal numbers!, the
non-neutral plasmas can attain thermal equilibrium and c
to low enough temperatures to form liquid and crystal-li
states. These plasmas under various confinement geome
have been extensively studied, particularly in the last deca
1199 ©2000 The American Physical Society
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1200 PRE 61VISHAL MEHRA AND JAYME DE LUCA
Generally the interelectron interaction is taken to be C
lombic or Yukawa.

The study of the possible low-energy states of a sys
may shed some light on the possibility of a phase transit
We chose to study the magnetic long-range effects in a c
fined electron gas and in the neighborhood of its lowe
energy state. We confine a system of charged electron
two and three dimensions by use of a background field, ta
either to be of a harmonic or exponential form. The electro
interact by Coulomb plus Darwin forces. For the purely Co
lombian repulsion, it is known that the lowest-energy state
this system is a Wigner lattice~triangularlike in two dimen-
sions!, which we also find with our quenching techniqu
@25,26#. We show that the long-range effects depend onN
and on a single parameterb, which is usually of the order o
102121023 for attainable physical densities. We find th
low-N systems need an artificially larger value ofb for the
long-range effects to be important. The assumption is
the critical value goes down withN, and because of the prac
tical impossibility of simulating systems with millions o
electrons, we investigate finite systems for an artificia
higher value ofb and extrapolate the scaling properties
the large-N case. This assumption holds for the exponen
confinement but not for the harmonic confinement, where
critical b does not go down withN.

This paper is divided as follows. Section II introduces t
model and defines the quenching procedure. The nume
results for the two-dimensional~2D! systems are described i
Sec. III; two subsections correspond to types of confin
potential. Section IV deals with the three-dimensional~3D!
systems, again divided into subsections. The papers
with a discussion in Sec. V.

II. DARWIN LAGRANGIAN AND THE NATURAL
QUENCHING

We considerN electrons in two or three dimensions inte
acting via the Coulomb repulsion plus the velocit
dependent Darwin magnetic interaction@9,12# and confined
by a one-electron potentialVC(rW) of the positive back-
ground. The Lagrangian for this system can be written a

L5
m

2 (
i 51

N

vW i
22e2(

i , j

N
1

r i j
1e2(

i , j

N
vW i•vW j1~vW i•êi j !~vW j•êi j !

2c2r i j

2(
i

VC~rW i !, ~1!

whererW i and vW i are the position and the velocity of thei th
electron andrW i j [rW i2rW j , r i j [urW i j u, êi j [rW i j /r i j is the unit
vector pointing from thei th to the j th electron,e is the
electronic charge, andc is the velocity of light. The first term
is the kinetic energyEK of the system and the second term
the Coulomb energy. The next term is the DarwinVD which
can be expressed in terms of the vector potentialAW as

VD52
e

2c (
i

vW i•AW i , ~2!

with
-
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n.
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in
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g

ds

AW i~r ,v ![e(
j Þ i

vW j1êi j ~vW j•êi j !

2cri j
. ~3!

As the Lagrangian is time independent, there is an associ
energy constant which evaluates to@7#

E5(
i

1

2
mvW i

21
e

2c
vW i•AW i~r ,v !1(

i , j

e2

r i j
1(

i
VC~rW i !.

~4!

Notice that this energy isnot of the minimal coupling type

E5(
1

2
~pi2Ai !

21V, ~5!

which is only the case when the magnetic field is externa
the system, and consequently the vector potential is velo
independent. In the present situation, because of the inte
fields, the state of minimal energy is not always the ze
velocity configuration anymore, as the conditions for t
Bohr-Van Laufen theorem are not satisfied@9,18,27#. @This
theorem states that a velocity-independent vector poten
does not affect the partition functionif the energy is of the
minimal coupling form~5!.#

The form of the equations can be simplified by usi
scaled units: a length scale, given by the average intere
tron separationR, scales positions asxW→RxW ~in these units
the gas has a density equal to one!. Time is scaled asdt
→v0dt wherev0

2[e2/mR3. In these units the energy scale

asE→m(v0R)2Ê with

Ê5(
i

1

2
vW i

21(
i , j

1

r i j
1b2(

i , j

vW i•vW j1~vW i•êi j !~vW j•êi j !

2r i j

1(
i

V̂C~rW i !. ~6!

The parameterb2 in the above equation is defined as

b2[
r e

R
, ~7!

where r e5e2/mc2 is the classical electron radius and th
interelectronic distanceR in 2D is given byR51/An and
R5n21/3 in 3D. For some real physical situations: The co
duction band in metals forms a 3D degenerate plasma w
typical densities ofn;1023 cm23, which gives forb2 the
value of b2;1026. The highest density physical plasma
found in the interior of white dwarf stars, corresponding
an electron density ofn;1032 cm23 which gives b2

;1023 @28#.
Once the systems studied here are rotationally invari

Noether’s theorem determines a constant of motion@29# for
them

C[(
i 51

N

rW i3vW i1b2(
i , j

N
rW i3vW j1~rW i3êi j !~vW j•êi j !

2r i j
, ~8!

with êi j [rW i j /r i j , as before. For 2D this constant is a vect
perpendicular to the plane and for 3D the O~3! symmetry
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PRE 61 1201LONG-RANGE MAGNETIC ORDER AND THE DARWIN . . .
determines a constant vector by the above formula. This c
stant can be interpreted simply as the sum of the mechan
angular momenta plus the field angular momentum.

To look for the minimum energy states of the velocit
dependentN-body system, we adapt a numerical proced
analogous to the steepest descent quenching using wha
name the natural quenching vector field. We check that
potential systems this procedure produces the static cry
line arrangement of electrons known as the Wigner lat
@25,26#. We now define the natural quenching vector fie
which is constructed from the differential of the express
for the energy constant given by Eq.~6!. We start from a
random initial condition and integrate it as a function of
‘‘quenching parameter’’ by the following gradient equation

drW i

ds
52

]E

]rW i

,
dvW i

ds
52

]E

]vW i

. ~9!

It is easy to see that along this gradient motion the ene
always decreases, as the parameter derivative of the en
evaluates to

dE

ds
52(

i
U]E

]rW i
U2

2(
i
U ]E

]vW i
U2

. ~10!

Along with the numerical quenching from random initi
conditions it is necessary to use the relativistic form of
kinetic energy. Otherwise, we observe that some electr
acquire an enormous kinetic energy during quenching, cr
ing an enormous nonphysical internal field that still d
creases the total energy. Of course, for such large veloc
the Darwin approximation breaks down and the whole L
grangian describes nonphysical effects, as discussed in
@30#. In all our numerical experiments we check that t
electron energies were never relativistic in the final quenc
state, which guarantees that the Darwin approximation
valid. Last, to gain some understanding of how the ab
quenching procedure can find states with nonzero veloc
let us examine Eq.~9! for the velocities, which read as

dvW i

ds
52vW i2b2(

j Þ i

vW j1êi j ~vW j•êi j !

2r i j
. ~11!

Notice that on the right-hand side we have a linear funct
of the velocities, defining a linear matrixM (rW i ,b2). For b2

50, this matrix is minus the identity and the velocities a
all quenched down to zero. Above a critical value ofb2, this
matrix can have negative and zero eigenvalues, and it is
possible to quench the velocities to zero anymore, whic
the cause of the nonzero velocity states we find. The crit
point bc

2 can also be located by an alternative analyti
method: Consider Eq.~11! for the velocity quenching. Fo
b250, the eigenvalues ofM are all degenerate and equal
one. Taking the electron coordinates to be those of the s
Wigner lattice~which can be obtained forb250), one can
diagonalizeM numerically and find all its eigenvalues. Th
critical bc

2 is that for which the minimum eigenvalue ofM
crosses zero, i.e., the minimum eigenvalue ofM is just nega-
tive. It can be seen then that in this case the quenching
decrease the energywhile increasing the velocities along th
n-
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negative eigenvector directions. We have diagonalizedM in
the neighborhood of the Wigner lattice and it is satisfacto
that the criticalb2 calculated by the matrix method agre
with the values obtained by quenching.

III. NUMERICAL RESULTS FOR CIRCULAR DISK
GEOMETRY

A. Harmonic confinement

We consider first a system ofN electrons in 2D, confined
by the field of a uniformly charged circular disk of positiv
charges, of radiusRd scaled units, and with the electron
density of one electron per squared scaled unit (N5pRd

2).
For this system the potential of the uniformly charged disk
positive background can be calculated analytically@31# and
for r ,Rd it is approximated by

V̂C~r !522A~pN!1
p3/2

2N1/2r 2. ~12!

We have explicitly included the negative constant to pro
erly account for the electrostatic interaction with the posit
background. One still needs to add the self-energy of
positive backgroundApN3/2/8 to expression~6! in order to
get the total electrostatic energy. We seek to determine
lowest-energy states of this system by employing the nat
quenching technique described above, and we integrate
~9! numerically with an 6/7 Runge-Kutta embedded integ
tor pair. By quenching from different initial conditions w
can hope to obtain insight into the character of the grou
state. The natural quenching is performed for the disk sys
for various values of the parameterb2. The electrons are
started from a triangular lattice, distorted slightly in a ra
dom manner, with velocities uniformly~and randomly! dis-
tributed up to a certain maximum value. A square-lattic
type initial configuration is also used and the same fi
result is found. The system is quenched until a steady s
appears to have been reached. To check if we actually a
a global minimum state and not merely a local minimum,
slightly heat the obtained configuration and quench it aga
By these means we are confident that our ground states a
least qualitatively correct.

These simulations are done for 225 to 1600 electrons
the disk. In all cases it is observed that below a certain va
of the parameterb2 the ground state is the static Wigne
lattice, independent of theb2. But above the criticalbc

2 , a
unique type of ground state is obtained. This state has n
zero kinetic energy with a striking nonuniform distributio
of velocities. The electrons with large velocities are confin
to an antiferromagnetic cluster in the center of the disk. T
configuration in the position space remains visibly triang
larlike. The electrons in the central cluster have velocit
aligned in a manner to minimize the Darwin energy~Fig. 1!.
This parallel and antiparallel orientation of the velociti
succeeds in lowering the energy of the nonstatic configu
tion below the static Wigner lattice.

The critical parameter valuebc
2 decreases with the in

creasingN, the number of electrons in the disk, but it
rather a weak dependence. For the 225 electrons diskbc

2

'0.72 while it is approximately 0.71 for the 1600 electro
disk. The relative size of the cluster slowly decreases w
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1202 PRE 61VISHAL MEHRA AND JAYME DE LUCA
increasingN: we quantify it as following. An electroni be-
longs to the cluster ifb2v i

2.0.01. The quantityb2v2 is gen-
erally about 0.06 for the fastest electron. Atb250.75, this
criterion yields the fraction of the cluster electrons to be 0
for the 225 electron system and monotonously decreasin
0.26 for N5900 and to 0.23 forN51600. However, it ap-
pears that the cluster remains equally hot, independent oN,
i.e., the average kinetic energy per cluster electron does
depend onN at constantb2. Further increasing the value o
b2 beyondbc

2 causes a rapid increase both in the size and
temperature of the cluster. The ground-state energy con
ues to decrease asb2 is increased beyondbc

2 ~Fig. 2!.
The quenching runs do not always yield the ground st

Often, in particular for larger-sized disks, an imperfec
aligned higher energy state is obtained. The local order i
the same type as the true ground state but on a larger s
two or more regions of the local order have a mismat
analogous to grain boundaries in a polycrystalline mate
~Fig. 3!.

B. Exponential confinement

The effect of choice of the confining potential may
studied by considering a different potential. To this end,
replace the harmonic potential by an exponential potenti

V̂C5V0 exp@~r 2Rd!/r W#.

Here, as beforeRd5A(N/p) and r W50.5 in scaled units.
The quenches are performed in a manner identical to
described above, starting from a randomly distorted trian
lar lattice. The criticalbc

2 is obtained, separating the stat
and nonstatic ground states. The values ofbc

2 are rather low
and theydecreaseappreciably with increasingN. We find
bc

2'0.52 forN5225 to about 0.42 forN51600. These~and
the intermediateN5484 andN5900) values may be fitted
to a power lawbc

2;Na with a'20.11.

FIG. 1. The ground state of a harmonically confined disk w
N5900 atb250.75. The electrons are located at positions mar
with 1. Arrows are drawn from these positions; the length of t
arrows is proportional to the magnitude of the electron veloci
obtained after quenching. The direction of an arrow gives the a
of the corresponding velocity vector. Coordinates are in units
b22r e wherer e is the classical electron radius.
1
to

ot

e
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of
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e
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-

The character of the ground states is also affected.
edge~i.e., the surface! of the static lattice is no longer trian
gularlike but is composed of two ringlike layers. Abovebc

2

the velocity distribution is highly inhomogeneous: the kine
energy is concentrated in the two edge layers~Fig. 4!. In-
creasingb2 beyond bc

2 does not result in more electron
acquiring kinetic energy but merely increases kinetic ene
of the edge electrons.

d

s
le
f

FIG. 2. ~a! Ground-state energy of a harmonically confined d
with N5225 vsb2. The criticalb2 is slightly less than 0.72. The
energy unit isb2e2/r e . ~b! Ground-state energy of a harmonical
confined electron gas in 3D withN5216 vsb2. The criticalb2 is
slightly less than 0.67. Energy is scaled byb2e2/r e .

FIG. 3. A higher-energy minimum of a harmonically confine
disk with N5900 atb250.75. The arrows are made in the mann
described in the previous figure. Coordinates are in units ofb22r e

wherer e is the classical electron radius.
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IV. NUMERICAL RESULTS FOR SPHERICAL
GEOMETRY

A. Harmonic confinement

In this section we considerN electrons confined by the
field of a homogeneous positively charged sphere of rad
Rd . The potential~for r ,Rd! can be calculated exactly,

V̂C522pRd
21

2p

3
r 2,

which follows immediately from the Gauss law of electr
statics. To obtain the total electrostatic energy we must ag
add the self-energy contribution of the backgrou
(p/5)NRd

2 to expression~6!. As before, the electron densit
is taken to be one electron per scaled unit. Quenches
performed forN5216–1000 electron systems. Simulatio
are started from a randomly distorted cubic lattice, while
velocities are initialized in the manner previously describ
for the disk geometry. As in the disk geometry, a criticalb2

separates static ground states from the nonstatic gro
states. The critical bc

2 is slightly smaller in three
dimensions—it varies from'0.67 forN5216 to about 0.66
for N51000.

But the character of the ground states is very differ
from that obtained for the disk geometry. The electrons
arranged in a multiple ringlike structure around the cente
the ball. These rings possess sharp boundaries and their
ber grows withN. For example, the 216 electrons system h
four such rings~including the cluster of central electron!
while seven rings are visible forN51000 system.

This ringlike structure persists beyondbc
2 . Though, the

velocity distribution is not homogeneous, a distinct cluster
hot electrons is not formed. The velocities project radia
outwards~Fig. 5!. The electrons in the small central clust
have smaller than average kinetic energy. The kinetic ene
is fairly shared between the other rings but the distribut
between electrons in a particular ring is nonuniform.

The different ordering in two and three dimensions h
striking effects: in 3D the Darwin interactions betwe
neighboring electrons are highly repulsive and the lower
of the energy is provided by the Darwin interactions of d

FIG. 4. The ground state of an exponentially confined elect
gas in 2D atb250.45. The arrows are drawn as in Fig. 1. Coor
nates are in units ofb22r e wherer e is the classical electron radius
s
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tant electrons. Whereas, in the 2D disk geometry, the Dar
interactions between nearest-neighbor electrons lower
Darwin energy.

B. Exponential confinement

In this section we describe the results of the simulation
3D electron gas confined by an exponential potential

V̂C5V0 exp@~r 2Rd!/r W#.

Here Rd is defined by the relationN5(4p/3)Rd
3 , and r W

51.5. The static and nonstatic ground states are again
tained, below and abovebc

2 , respectively. Though, in con
trast to the harmonic confinement, thebc

2 decreases with
increasingN with the power lawbc

2;N20.23. The values of
bc

2 range from 0.74 forN5216 to 0.50 forN51000.
The lattice has a ringlike structure again but with som

differences. First, the number of rings is smaller:N51000
system has only four rings compared with seven with h
monic potential. Second, the central cluster is absent.
distribution of kinetic energy is also different from the ha
monic case. The kinetic energy per electron increases as
goes outwards and forN51000 the inner two rings have
almost no kinetic energy.

V. DISCUSSIONS AND CONCLUSIONS

It would be natural to integrate the supercritic
symmetry-breaking states of low energy and nonzero ang
momentum to see the time dependence of the angular
mentum@6#, but this is not an easy numerical job. The ex
tence of zero and negative eigenvalues ofM in Eq. ~11!
signals the onset of complex dynamical behavior for t
system: The Lagrangian equations of motion that follo
from Eq. ~1! are

aW i1b2(
j Þ i

aW j1êi j ~aW j•êi j !

2r i j

52
dVC

drW i

2(
j Þ i

êi j

r i j
2 1b2(

j Þ i

1

2r i j
2 $~vW i•êi j !vW j

1@ uvW j u223~vW j•êi j !
222vW i•vW j #êi j %. ~13!

n
FIG. 5. The ground state for harmonically confined system

three dimensions withN5216 atb250.74. The velocities projec
radially outwards. Arrows are made in a manner similar to
two-dimensional case but without pluses. Coordinates are in u
of b22r e wherer e is the classical electron radius.
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1204 PRE 61VISHAL MEHRA AND JAYME DE LUCA
Notice that this is an algebraic-differential equation@10#, and
the linear matrix sitting on the left side is the same ex
matrix M that appeared in Eq.~11!. The numerical procedure
to integrate this equation is delicate: If the matrix is nond
generate, which is the case for low values ofb, the integrator
RADAU @32# can be used in a fast and efficient way. If th
matrix has only one zero eigenvalue, the integrator DAS
@10# can be used, as long as the matrix does not lose r
along the trajectory, which is the case for rare initial con
tions only. The general high-index case where the matr
rank is lesser than 2N21, or even worse if it loses ran
along the trajectory, then one is faced with a rich system
certainly a very complex dynamics. As a matter of fact,
1976 one of the earliest studies of this many-body sys
declared it intractable@15# and a coarse-grained field ap
proximation was developed to study it, which later becam
plasma simulation technique@17#. We could integrate initial
conditions with a very lowb, and there we found that th
angular momentum is an approximate constant, as it sh
be for theb50 case, according to Eq.~8!. For intermediate
values ofb we are able to perform the numerical integrati
of the dynamics using RADAU, and we find that the to
angular momentum does not change sign for very-long-t
scales. In the supercritical situation, where it would be
interest to study the dynamics, we find that the time step
RADAU quickly go to zero due to the criticality of the ma
trix. An integration method has still to be developed to sim
late this interesting dynamics in the high algebraic ind
situation.

Our numerical results definitely show that forfinite N the
magnetic interaction lowers the energy below the Wig
lattice, which is the main result of this paper. The thermo
namic limit is a more subtle question, which we cannot co
pletely decide with numerics. As regards the extensivity
the purely Coulomb lattices~undercritical densities!, our re-
sults are as follows: In three dimensions, our data show
c

t

-

L
nk
-
’s

d

m

a

ld

l
e
f
of

-
x

r
-
-
f

at

E/N tends to a constant value. This is in agreement w
Gauss’s law, by which charge neutrality causes the total e
trostatic energy to be an extensive quantity. On the ot
hand, our data for 2D indicate that the total electrostatic
ergy is nonextensive. We were intrigued by these results
quenched 2D lattices, and as a check we evaluated num
cally the total electrostatic energy~plus background energy!
for an exact triangular Wigner lattice of up toN510 000
electrons. The results confirm that the total electrostatic
ergy is really non-extensive, and there seems to be no t
modynamic limit in 2D.

At constantb2 the Darwin lowering of energy is smalle
for larger N systems in 2D. This can also be inferred fro
the observation made in Sec. III A that the fraction of h
electrons goes down with increasingN. Thus our results in-
dicate that as limN→` at constant electron density the Da
win lowering vanishes. This conclusion holds for harmo
cally confined systems for whichbc

2 is almost independent o
N and hence different sized systems can be compared at
stantb2.

The magnetic lowering does not decrease with largeN in
3D, which is suggestive that the effect could survive in
proper thermodynamic limit. In a certain sense, the Darw
interaction merely renormalizes the electronic charge.
this would interfere with the cancellation of the backgrou
charge and hence jeopardize the thermodynamic limit@33#.
We feel that more numerical and analytical work is needed
resolve the question of the thermodynamic limit for the D
win Lagrangian in 3D.
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